damoshayu.cn,苍井空浴缸大战猛男120分钟,网址你懂的,中国女人内射6XXXXXWWW

kb3194798

前沿拓展:

kb3194798

軟10月12日面向Win10 Mobile和W顯然是本次累積更新的一個漏洞,只是略有些無厘頭了。根據(jù)不同用戶的反映,無論自己電腦C盤的容量是多少,更新KB3194798后清理磁盤,Disk Cleanup都顯示產(chǎn)生了3.99 TB的可刪除文件。有用戶舉例稱,自己有三臺電腦,每臺電腦的硬盤容量都不同,但實際最后的結(jié)果都是現(xiàn)實KB31片通職始且勞高94798產(chǎn)生了3.99 TB的垃圾文件。
  不過,雖然Disk Clea學(xué)己責(zé)律沙曲款評春括收nup回報的可刪除

1.1 工作原理

給定一個訓(xùn)練數(shù)據(jù)集,對新的輸入實例,在訓(xùn)練數(shù)據(jù)集中找到與該實例最鄰近的 k (k <= 20)個實例,這 k 個實例的多數(shù)屬于某個類,

就把該輸入實例分為這個類。

https://www.cnblogs.com/ybjourney/p/4702562.html給出的例子很形象,這里借用一下。

如下圖,綠色圓要被決定賦予哪個類,是紅色三角形還是藍色四方形?如果K=3,由于紅色三角形所占比例為2/3,綠色圓將被賦予紅色三角形那個類,

如果K=5,由于藍色四方形比例為3/5,因此綠色圓被賦予藍色四方形類。

kb3194798

由此也說明了KNN算法的結(jié)果很大程度取決于K的選擇。

1.2 歐氏距離公式

計算兩個向量點xA和xB之間的距離

kb3194798

1.3 分類決策規(guī)則(如多數(shù)表為指示函數(shù),即當kb3194798

時為 1,否則為0。

1.4 算法流程

對未知類別屬性的數(shù)據(jù)集中的每個點依次執(zhí)行以下**作:

1. 計算已知類別數(shù)據(jù)集中的點與當前點之間的距離;

2. 按照距離遞增次序排序;

3. 選取與當前點距離最小的 k 個點;

4. 確定前 k 個點所在類別的出現(xiàn)頻率;

5. 返回前 k 個點出現(xiàn)頻率最高的類別作為當前點的預(yù)測分類;

2. 代碼實現(xiàn)

python3.6

每個方法的作用,以及每行代碼的作用,同樣我都做了詳細的注解。

希望大家最好自己能實現(xiàn)一下,特別是在運算時 list,array,matrix之間的關(guān)系以及運用場景,

只有在你自己實現(xiàn)時,才能理清這三者的作用以及關(guān)系。

2.1 輸入數(shù)據(jù)

datingTestSet2.txt :約會網(wǎng)站數(shù)據(jù)(三種類型:不喜歡的人,魅力一般的人,極具魅力的人)

1 40920 8.326976 0.953952 3
2 14488 7.153469 1.673904 2
3 26052 1.441871 0.805124 1
4 75136 13.147394 0.428964 1
5 38344 1.669788 0.134296 1
6 72993 10.141740 1.032955 1
7 35948 6.830792 1.213192 3
8 42666 13.276369 0.543880 3
9 67497 8.631577 0.749278 1
10 35483 12.273169 1.508053 3
11 50242 3.723498 0.831917 1
12 63275 8.385879 1.669485 1
13 5569 4.875435 0.728658 2
14 51052 4.680098 0.625224 1
15 77372 15.299570 0.331351 1
16 43673 1.889461 0.191283 1
17 61364 7.516754 1.269164 1
18 69673 14.239195 0.261333 1
19 15669 0.000000 1.250185 2
20 28488 10.528555 1.304844 3
21 6487 3.540265 0.822483 2
22 37708 2.991551 0.833920 1
23 22620 5.297865 0.638306 2
24 28782 6.593803 0.187108 3
25 19739 2.816760 1.686209 2
26 36788 12.458258 0.649617 3
27 5741 0.000000 1.656418 2
28 28567 9.968648 0.731232 3
29 6808 1.364838 0.640103 2
30 41611 0.230453 1.151996 1
31 36661 11.865402 0.882810 3
32 43605 0.120460 1.352013 1
33 15360 8.545204 1.340429 3
34 63796 5.856649 0.160006 1
35 10743 9.665618 0.778626 2
36 70808 9.778763 1.084103 1
37 72011 4.932976 0.632026 1
38 5914 2.216246 0.587095 2
39 14851 14.305636 0.632317 3
40 33553 12.591889 0.686581 3
41 44952 3.424649 1.004504 1
42 17934 0.000000 0.147573 2
43 27738 8.533823 0.205324 3
44 29290 9.829528 0.238620 3
45 42330 11.492186 0.263499 3
46 36429 3.570968 0.832254 1
47 39623 1.771228 0.207612 1
48 32404 3.513921 0.991854 1
49 27268 4.398172 0.975024 1
50 5477 4.276823 1.174874 2
51 14254 5.946014 1.614244 2
52 68613 13.798970 0.724375 1
53 41539 10.393591 1.663724 3
54 7917 3.007577 0.297302 2
55 21331 1.031938 0.486174 2
56 8338 4.751212 0.064693 2
57 5176 3.692269 1.655113 2
58 18983 10.448091 0.267652 3
59 68837 10.585786 0.329557 1
60 13438 1.604501 0.069064 2
61 48849 3.679497 0.961466 1
62 12285 3.795146 0.696694 2
63 7826 2.531885 1.659173 2
64 5565 9.733340 0.977746 2
65 10346 6.093067 1.413798 2
66 1823 7.712960 1.054927 2
67 9744 11.470364 0.760461 3
68 16857 2.886529 0.934416 2
69 39336 10.054373 1.138351 3
70 65230 9.972470 0.881876 1
71 2463 2.335785 1.366145 2
72 27353 11.375155 1.528626 3
73 16191 0.000000 0.605619 2
74 12258 4.126787 0.357501 2
75 42377 6.319522 1.058602 1
76 25607 8.680527 0.086955 3
77 77450 14.856391 1.129823 1
78 58732 2.454285 0.222380 1
79 46426 7.292202 0.548607 3
80 32688 8.745137 0.857348 3
81 64890 8.579001 0.683048 1
82 8554 2.507302 0.869177 2
83 28861 11.415476 1.505466 3
84 42050 4.838540 1.680892 1
85 32193 10.339507 0.583646 3
86 64895 6.573742 1.151433 1
87 2355 6.539397 0.462065 2
88 0 2.209159 0.723567 2
89 70406 11.196378 0.836326 1
90 57399 4.229595 0.128253 1
91 41732 9.505944 0.005273 3
92 11429 8.652725 1.348934 3
93 75270 17.101108 0.490712 1
94 5459 7.871839 0.717662 2
95 73520 8.262131 1.361646 1
96 40279 9.015635 1.658555 3
97 21540 9.215351 0.806762 3
98 17694 6.375007 0.033678 2
99 22329 2.262014 1.022169 1
100 46570 5.677110 0.709469 1
101 42403 11.293017 0.207976 3
102 33654 6.590043 1.353117 1
103 9171 4.711960 0.194167 2
104 28122 8.768099 1.108041 3
105 34095 11.502519 0.545097 3
106 1774 4.682812 0.578112 2
107 40131 12.446578 0.300754 3
108 13994 12.908384 1.657722 3
109 77064 12.601108 0.974527 1
110 11210 3.929456 0.025466 2
111 6122 9.751503 1.182050 3
112 15341 3.043767 0.888168 2
113 44373 4.391522 0.807100 1
114 28454 11.695276 0.679015 3
115 63771 7.879742 0.154263 1
116 9217 5.613163 0.933632 2
117 69076 9.140172 0.851300 1
118 24489 4.258644 0.206892 1
119 16871 6.799831 1.221171 2
120 39776 8.752758 0.484418 3
121 5901 1.123033 1.180352 2
122 40987 10.833248 1.585426 3
123 7479 3.051618 0.026781 2
124 38768 5.308409 0.030683 3
125 4933 1.841792 0.028099 2
126 32311 2.261978 1.605603 1
127 26501 11.573696 1.061347 3
128 37433 8.038764 1.083910 3
129 23503 10.734007 0.103715 3
130 68607 9.661909 0.350772 1
131 27742 9.005850 0.548737 3
132 11303 0.000000 0.539131 2
133 0 5.757140 1.062373 2
134 32729 9.164656 1.624565 3
135 24619 1.318340 1.436243 1
136 42414 14.075597 0.695934 3
137 20210 10.107550 1.308398 3
138 33225 7.960293 1.219760 3
139 54483 6.317292 0.018209 1
140 18475 12.664194 0.595653 3
141 33926 2.906644 0.581657 1
142 43865 2.388241 0.913938 1
143 26547 6.024471 0.486215 3
144 44404 7.226764 1.255329 3
145 16674 4.183997 1.275290 2
146 8123 11.850211 1.096981 3
147 42747 11.661797 1.167935 3
148 56054 3.574967 0.494666 1
149 10933 0.000000 0.107475 2
150 18121 7.937657 0.904799 3
151 11272 3.365027 1.014085 2
152 16297 0.000000 0.367491 2
153 28168 13.860672 1.293270 3
154 40963 10.306714 1.211594 3
155 31685 7.228002 0.670670 3
156 55164 4.508740 1.036192 1
157 17595 0.366328 0.163652 2
158 1862 3.299444 0.575152 2
159 57087 0.573287 0.607915 1
160 63082 9.183738 0.012280 1
161 51213 7.842646 1.060636 3
162 6487 4.750964 0.558240 2
163 4805 11.438702 1.556334 3
164 30302 8.243063 1.122768 3
165 68680 7.949017 0.271865 1
166 17591 7.875477 0.227085 2
167 74391 9.569087 0.364856 1
168 37217 7.750103 0.869094 3
169 42814 0.000000 1.515293 1
170 14738 3.396030 0.633977 2
171 19896 11.916091 0.025294 3
172 14673 0.460758 0.689586 2
173 32011 13.087566 0.476002 3
174 58736 4.589016 1.672600 1
175 54744 8.397217 1.534103 1
176 29482 5.562772 1.689388 1
177 27698 10.905159 0.619091 3
178 11443 1.311441 1.169887 2
179 56117 10.647170 0.980141 3
180 39514 0.000000 0.481918 1
181 26627 8.503025 0.830861 3
182 16525 0.436880 1.395314 2
183 24368 6.127867 1.102179 1
184 22160 12.112492 0.359680 3
185 6030 1.264968 1.141582 2
186 6468 6.067568 1.327047 2
187 22945 8.010964 1.681648 3
188 18520 3.791084 0.304072 2
189 34914 11.773195 1.262621 3
190 6121 8.339588 1.443357 2
191 38063 2.563092 1.464013 1
192 23410 5.954216 0.953782 1
193 35073 9.288374 0.767318 3
194 52914 3.976796 1.043109 1
195 16801 8.585227 1.455708 3
196 9533 1.271946 0.796506 2
197 16721 0.000000 0.242778 2
198 5832 0.000000 0.089749 2
199 44591 11.521298 0.300860 3
200 10143 1.139447 0.415373 2
201 21609 5.699090 1.391892 2
202 23817 2.449378 1.322560 1
203 15640 0.000000 1.228380 2
204 8847 3.168365 0.053993 2
205 50939 10.428610 1.126257 3
206 28521 2.943070 1.446816 1
207 32901 10.441348 0.975283 3
208 42850 12.478764 1.628726 3
209 13499 5.856902 0.363883 2
210 40345 2.476420 0.096075 1
211 43547 1.826637 0.811457 1
212 70758 4.324451 0.328235 1
213 19780 1.376085 1.178359 2
214 44484 5.342462 0.394527 1
215 54462 11.835521 0.693301 3
216 20085 12.423687 1.424264 3
217 42291 12.161273 0.071131 3
218 47550 8.148360 1.649194 3
219 11938 1.531067 1.549756 2
220 40699 3.200912 0.309679 1
221 70908 8.862691 0.530506 1
222 73989 6.370551 0.369350 1
223 11872 2.468841 0.145060 2
224 48463 11.054212 0.141508 3
225 15987 2.037080 0.715243 2
226 70036 13.364030 0.549972 1
227 32967 10.249135 0.192735 3
228 63249 10.464252 1.669767 1
229 42795 9.424574 0.013725 3
230 14459 4.458902 0.268444 2
231 19973 0.000000 0.575976 2
232 5494 9.686082 1.029808 3
233 67902 13.649402 1.052618 1
234 25621 13.181148 0.273014 3
235 27545 3.877472 0.401600 1
236 58656 1.413952 0.451380 1
237 7327 4.248986 1.430249 2
238 64555 8.779183 0.845947 1
239 8998 4.156252 0.097109 2
240 11752 5.580018 0.158401 2
241 76319 15.040440 1.366898 1
242 27665 12.793870 1.307323 3
243 67417 3.254877 0.669546 1
244 21808 10.725607 0.588588 3
245 15326 8.256473 0.765891 2
246 20057 8.033892 1.618562 3
247 79341 10.702532 0.204792 1
248 15636 5.062996 1.132555 2
249 35602 10.772286 0.668721 3
250 28544 1.892354 0.837028 1
251 57663 1.019966 0.372320 1
252 78727 15.546043 0.729742 1
253 68255 11.638205 0.409125 1
254 14964 3.427886 0.975616 2
255 21835 11.246174 1.475586 3
256 7487 0.000000 0.645045 2
257 8700 0.000000 1.424017 2
258 26226 8.242553 0.279069 3
259 65899 8.700060 0.101807 1
260 6543 0.812344 0.260334 2
261 46556 2.448235 1.176829 1
262 71038 13.230078 0.616147 1
263 47657 0.236133 0.340840 1
264 19600 11.155826 0.335131 3
265 37422 11.029636 0.505769 3
266 1363 2.901181 1.646633 2
267 26535 3.924594 1.143120 1
268 47707 2.524806 1.292848 1
269 38055 3.527474 1.449158 1
270 6286 3.384281 0.889268 2
271 10747 0.000000 1.107592 2
272 44883 11.898890 0.406441 3
273 56823 3.529892 1.375844 1
274 68086 11.442677 0.696919 1
275 70242 10.308145 0.422722 1
276 11409 8.540529 0.727373 2
277 67671 7.156949 1.691682 1
278 61238 0.720675 0.847574 1
279 17774 0.229405 1.038603 2
280 53376 3.399331 0.077501 1
281 30930 6.157239 0.580133 1
282 28987 1.239698 0.719989 1
283 13655 6.036854 0.016548 2
284 7227 5.258665 0.933722 2
285 40409 12.393001 1.571281 3
286 13605 9.627613 0.935842 2
287 26400 11.130453 0.597610 3
288 13491 8.842595 0.349768 3
289 30232 10.690010 1.456595 3
290 43253 5.714718 1.674780 3
291 55536 3.052505 1.335804 1
292 8807 0.000000 0.059025 2
293 25783 9.945307 1.287952 3
294 22812 2.719723 1.142148 1
295 77826 11.154055 1.608486 1
296 38172 2.687918 0.660836 1
297 31676 10.037847 0.962245 3
298 74038 12.404762 1.112080 1
299 44738 10.237305 0.633422 3
300 17410 4.745392 0.662520 2
301 5688 4.639461 1.569431 2
302 36642 3.149310 0.639669 1
303 29956 13.406875 1.639194 3
304 60350 6.068668 0.881241 1
305 23758 9.477022 0.899002 3
306 25780 3.897620 0.560201 2
307 11342 5.463615 1.203677 2
308 36109 3.369267 1.575043 1
309 14292 5.234562 0.825954 2
310 11160 0.000000 0.722170 2
311 23762 12.979069 0.504068 3
312 39567 5.376564 0.557476 1
313 25647 13.527910 1.586732 3
314 14814 2.196889 0.784587 2
315 73590 10.691748 0.007509 1
316 35187 1.659242 0.447066 1
317 49459 8.369667 0.656697 3
318 31657 13.157197 0.143248 3
319 6259 8.199667 0.908508 2
320 33101 4.441669 0.439381 3
321 27107 9.846492 0.644523 3
322 17824 0.019540 0.977949 2
323 43536 8.253774 0.748700 3
324 67705 6.038620 1.509646 1
325 35283 6.091587 1.694641 3
326 71308 8.986820 1.225165 1
327 31054 11.508473 1.624296 3
328 52387 8.807734 0.713922 3
329 40328 0.000000 0.816676 1
330 34844 8.889202 1.665414 3
331 11607 3.178117 0.542752 2
332 64306 7.013795 0.139909 1
333 32721 9.605014 0.065254 3
334 33170 1.230540 1.331674 1
335 37192 10.412811 0.890803 3
336 13089 0.000000 0.567161 2
337 66491 9.699991 0.122011 1
338 15941 0.000000 0.061191 2
339 4272 4.455293 0.272135 2
340 48812 3.020977 1.502803 1
341 28818 8.099278 0.216317 3
342 35394 1.157764 1.603217 1
343 71791 10.105396 0.121067 1
344 40668 11.230148 0.408603 3
345 39580 9.070058 0.011379 3
346 11786 0.566460 0.478837 2
347 19251 0.000000 0.487300 2
348 56594 8.956369 1.193484 3
349 54495 1.523057 0.620528 1
350 11844 2.749006 0.169855 2
351 45465 9.235393 0.188350 3
352 31033 10.555573 0.403927 3
353 16633 6.956372 1.519308 2
354 13887 0.636281 1.273984 2
355 52603 3.574737 0.075163 1
356 72000 9.032486 1.461809 1
357 68497 5.958993 0.023012 1
358 35135 2.435300 1.211744 1
359 26397 10.539731 1.638248 3
360 7313 7.646702 0.056513 2
361 91273 20.919349 0.644571 1
362 24743 1.424726 0.838447 1
363 31690 6.748663 0.890223 3
364 15432 2.289167 0.114881 2
365 58394 5.548377 0.402238 1
366 33962 6.057227 0.432666 1
367 31442 10.828595 0.559955 3
368 31044 11.318160 0.271094 3
369 29938 13.265311 0.633903 3
370 9875 0.000000 1.496715 2
371 51542 6.517133 0.402519 3
372 11878 4.934374 1.520028 2
373 69241 10.151738 0.896433 1
374 37776 2.425781 1.559467 1
375 68997 9.778962 1.195498 1
376 67416 12.219950 0.657677 1
377 59225 7.394151 0.954434 1
378 29138 8.518535 0.742546 3
379 5962 2.798700 0.662632 2
380 10847 0.637930 0.617373 2
381 70527 10.750490 0.097415 1
382 9610 0.625382 0.140969 2
383 64734 10.027968 0.282787 1
384 25941 9.817347 0.364197 3
385 2763 0.646828 1.266069 2
386 55601 3.347111 0.914294 1
387 31128 11.816892 0.193798 3
388 5181 0.000000 1.480198 2
389 69982 10.945666 0.993219 1
390 52440 10.244706 0.280539 3
391 57350 2.579801 1.149172 1
392 57869 2.630410 0.098869 1
393 56557 11.746200 1.695517 3
394 42342 8.104232 1.326277 3
395 15560 12.409743 0.790295 3
396 34826 12.167844 1.328086 3
397 8569 3.198408 0.299287 2
398 77623 16.055513 0.541052 1
399 78184 7.138659 0.158481 1
400 7036 4.831041 0.761419 2
401 69616 10.082890 1.373611 1
402 21546 10.066867 0.788470 3
403 36715 8.129538 0.329913 3
404 20522 3.012463 1.138108 2
405 42349 3.720391 0.845974 1
406 9037 0.773493 1.148256 2
407 26728 10.962941 1.037324 3
408 587 0.177621 0.162614 2
409 48915 3.085853 0.967899 1
410 9824 8.426781 0.202558 2
411 4135 1.825927 1.128347 2
412 9666 2.185155 1.010173 2
413 59333 7.184595 1.261338 1
414 36198 0.000000 0.116525 1
415 34909 8.901752 1.033527 3
416 47516 2.451497 1.358795 1
417 55807 3.213631 0.432044 1
418 14036 3.974739 0.723929 2
419 42856 9.601306 0.619232 3
420 64007 8.363897 0.445341 1
421 59428 6.381484 1.365019 1
422 13730 0.000000 1.403914 2
423 41740 9.609836 1.438105 3
424 63546 9.904741 0.985862 1
425 30417 7.185807 1.489102 3
426 69636 5.466703 1.216571 1
427 64660 0.000000 0.915898 1
428 14883 4.575443 0.535671 2
429 7965 3.277076 1.010868 2
430 68620 10.246623 1.239634 1
431 8738 2.341735 1.060235 2
432 7544 3.201046 0.498843 2
433 6377 6.066013 0.120927 2
434 36842 8.829379 0.895657 3
435 81046 15.833048 1.568245 1
436 67736 13.516711 1.220153 1
437 32492 0.664284 1.116755 1
438 39299 6.325139 0.605109 3
439 77289 8.677499 0.344373 1
440 33835 8.188005 0.964896 3
441 71890 9.414263 0.384030 1
442 32054 9.196547 1.138253 3
443 38579 10.202968 0.452363 3
444 55984 2.119439 1.481661 1
445 72694 13.635078 0.858314 1
446 42299 0.083443 0.701669 1
447 26635 9.149096 1.051446 3
448 8579 1.933803 1.374388 2
449 37302 14.115544 0.676198 3
450 22878 8.933736 0.943352 3
451 4364 2.661254 0.946117 2
452 4985 0.988432 1.305027 2
453 37068 2.063741 1.125946 1
454 41137 2.220590 0.690754 1
455 67759 6.424849 0.806641 1
456 11831 1.156153 1.613674 2
457 34502 3.032720 0.601847 1
458 4088 3.076828 0.952089 2
459 15199 0.000000 0.318105 2
460 17309 7.750480 0.554015 3
461 42816 10.958135 1.482500 3
462 43751 10.222018 0.488678 3
463 58335 2.367988 0.435741 1
464 75039 7.686054 1.381455 1
465 42878 11.464879 1.481589 3
466 42770 11.075735 0.089726 3
467 8848 3.543989 0.345853 2
468 31340 8.123889 1.282880 3
469 41413 4.331769 0.754467 3
470 12731 0.120865 1.211961 2
471 22447 6.116109 0.701523 3
472 33564 7.474534 0.505790 3
473 48907 8.819454 0.649292 3
474 8762 6.802144 0.615284 2
475 46696 12.666325 0.931960 3
476 36851 8.636180 0.399333 3
477 67639 11.730991 1.289833 1
478 171 8.132449 0.039062 2
479 26674 10.296589 1.496144 3
480 8739 7.583906 1.005764 2
481 66668 9.777806 0.496377 1
482 68732 8.833546 0.513876 1
483 69995 4.907899 1.518036 1
484 82008 8.362736 1.285939 1
485 25054 9.084726 1.606312 3
486 33085 14.164141 0.560970 3
487 41379 9.080683 0.989920 3
488 39417 6.522767 0.038548 3
489 12556 3.690342 0.462281 2
490 39432 3.563706 0.242019 1
491 38010 1.065870 1.141569 1
492 69306 6.683796 1.456317 1
493 38000 1.712874 0.243945 1
494 46321 13.109929 1.280111 3
495 66293 11.327910 0.780977 1
496 22730 4.545711 1.233254 1
497 5952 3.367889 0.468104 2
498 72308 8.326224 0.567347 1
499 60338 8.978339 1.442034 1
500 13301 5.655826 1.582159 2
501 27884 8.855312 0.570684 3
502 11188 6.649568 0.544233 2
503 56796 3.966325 0.850410 1
504 8571 1.924045 1.664782 2
505 4914 6.004812 0.280369 2
506 10784 0.000000 0.375849 2
507 39296 9.923018 0.092192 3
508 13113 2.389084 0.119284 2
509 70204 13.663189 0.133251 1
510 46813 11.434976 0.321216 3
511 11697 0.358270 1.292858 2
512 44183 9.598873 0.223524 3
513 2225 6.375275 0.608040 2
514 29066 11.580532 0.458401 3
515 4245 5.319324 1.598070 2
516 34379 4.324031 1.603481 1
517 44441 2.358370 1.273204 1
518 2022 0.000000 1.182708 2
519 26866 12.824376 0.890411 3
520 57070 1.587247 1.456982 1
521 32932 8.510324 1.520683 3
522 51967 10.428884 1.187734 3
523 44432 8.346618 0.042318 3
524 67066 7.541444 0.809226 1
525 17262 2.540946 1.583286 2
526 79728 9.473047 0.692513 1
527 14259 0.352284 0.474080 2
528 6122 0.000000 0.589826 2
529 76879 12.405171 0.567201 1
530 11426 4.126775 0.871452 2
531 2493 0.034087 0.335848 2
532 19910 1.177634 0.075106 2
533 10939 0.000000 0.479996 2
534 17716 0.994909 0.611135 2
535 31390 11.053664 1.180117 3
536 20375 0.000000 1.679729 2
537 26309 2.495011 1.459589 1
538 33484 11.516831 0.001156 3
539 45944 9.213215 0.797743 3
540 4249 5.332865 0.109288 2
541 6089 0.000000 1.689771 2
542 7513 0.000000 1.126053 2
543 27862 12.640062 1.690903 3
544 39038 2.693142 1.317518 1
545 19218 3.328969 0.268271 2
546 62911 7.193166 1.117456 1
547 77758 6.615512 1.521012 1
548 27940 8.000567 0.835341 3
549 2194 4.017541 0.512104 2
550 37072 13.245859 0.927465 3
551 15585 5.970616 0.813624 2
552 25577 11.668719 0.886902 3
553 8777 4.283237 1.272728 2
554 29016 10.742963 0.971401 3
555 21910 12.326672 1.592608 3
556 12916 0.000000 0.344622 2
557 10976 0.000000 0.922846 2
558 79065 10.602095 0.573686 1
559 36759 10.861859 1.155054 3
560 50011 1.229094 1.638690 1
561 1155 0.410392 1.313401 2
562 71600 14.552711 0.616162 1
563 30817 14.178043 0.616313 3
564 54559 14.136260 0.362388 1
565 29764 0.093534 1.207194 1
566 69100 10.929021 0.403110 1
567 47324 11.432919 0.825959 3
568 73199 9.134527 0.586846 1
569 44461 5.071432 1.421420 1
570 45617 11.460254 1.541749 3
571 28221 11.620039 1.103553 3
572 7091 4.022079 0.207307 2
573 6110 3.057842 1.631262 2
574 79016 7.782169 0.404385 1
575 18289 7.981741 0.929789 3
576 43679 4.601363 0.268326 1
577 22075 2.595564 1.115375 1
578 23535 10.049077 0.391045 3
579 25301 3.265444 1.572970 2
580 32256 11.780282 1.511014 3
581 36951 3.075975 0.286284 1
582 31290 1.795307 0.194343 1
583 38953 11.106979 0.202415 3
584 35257 5.994413 0.800021 1
585 25847 9.706062 1.012182 3
586 32680 10.582992 0.836025 3
587 62018 7.038266 1.458979 1
588 9074 0.023771 0.015314 2
589 33004 12.823982 0.676371 3
590 44588 3.617770 0.493483 1
591 32565 8.346684 0.253317 3
592 38563 6.104317 0.099207 1
593 75668 16.207776 0.584973 1
594 9069 6.401969 1.691873 2
595 53395 2.298696 0.559757 1
596 28631 7.661515 0.055981 3
597 71036 6.353608 1.645301 1
598 71142 10.442780 0.335870 1
599 37653 3.834509 1.346121 1
600 76839 10.998587 0.584555 1
601 9916 2.695935 1.512111 2
602 38889 3.356646 0.324230 1
603 39075 14.677836 0.793183 3
604 48071 1.551934 0.130902 1
605 7275 2.464739 0.223502 2
606 41804 1.533216 1.007481 1
607 35665 12.473921 0.162910 3
608 67956 6.491596 0.032576 1
609 41892 10.506276 1.510747 3
610 38844 4.380388 0.748506 1
611 74197 13.670988 1.687944 1
612 14201 8.317599 0.390409 2
613 3908 0.000000 0.556245 2
614 2459 0.000000 0.290218 2
615 32027 10.095799 1.188148 3
616 12870 0.860695 1.482632 2
617 9880 1.557564 0.711278 2
618 72784 10.072779 0.756030 1
619 17521 0.000000 0.431468 2
620 50283 7.140817 0.883813 3
621 33536 11.384548 1.438307 3
622 9452 3.214568 1.083536 2
623 37457 11.720655 0.301636 3
624 17724 6.374475 1.475925 3
625 43869 5.749684 0.198875 3
626 264 3.871808 0.552602 2
627 25736 8.336309 0.636238 3
628 39584 9.710442 1.503735 3
629 31246 1.532611 1.433898 1
630 49567 9.785785 0.984614 3
631 7052 2.633627 1.097866 2
632 35493 9.238935 0.494701 3
633 10986 1.205656 1.398803 2
634 49508 3.124909 1.670121 1
635 5734 7.935489 1.585044 2
636 65479 12.746636 1.560352 1
637 77268 10.732563 0.545321 1
638 28490 3.977403 0.766103 1
639 13546 4.194426 0.450663 2
640 37166 9.610286 0.142912 3
641 16381 4.797555 1.260455 2
642 10848 1.615279 0.093002 2
643 35405 4.614771 1.027105 1
644 15917 0.000000 1.369726 2
645 6131 0.608457 0.512220 2
646 67432 6.558239 0.667579 1
647 30354 12.315116 0.197068 3
648 69696 7.014973 1.494616 1
649 33481 8.822304 1.194177 3
650 43075 10.086796 0.570455 3
651 38343 7.241614 1.661627 3
652 14318 4.602395 1.511768 2
653 5367 7.434921 0.079792 2
654 37894 10.467570 1.595418 3
655 36172 9.948127 0.003663 3
656 40123 2.478529 1.568987 1
657 10976 5.938545 0.878540 2
658 12705 0.000000 0.948004 2
659 12495 5.559181 1.357926 2
660 35681 9.776654 0.535966 3
661 46202 3.092056 0.490906 1
662 11505 0.000000 1.623311 2
663 22834 4.459495 0.538867 1
664 49901 8.334306 1.646600 3
665 71932 11.226654 0.384686 1
666 13279 3.904737 1.597294 2
667 49112 7.038205 1.211329 3
668 77129 9.836120 1.054340 1
669 37447 1.990976 0.378081 1
670 62397 9.005302 0.485385 1
671 0 1.772510 1.039873 2
672 15476 0.458674 0.819560 2
673 40625 10.003919 0.231658 3
674 36706 0.520807 1.476008 1
675 28580 10.678214 1.431837 3
676 25862 4.425992 1.363842 1
677 63488 12.035355 0.831222 1
678 33944 10.606732 1.253858 3
679 30099 1.568653 0.684264 1
680 13725 2.545434 0.024271 2
681 36768 10.264062 0.982593 3
682 64656 9.866276 0.685218 1
683 14927 0.142704 0.057455 2
684 43231 9.853270 1.521432 3
685 66087 6.596604 1.653574 1
686 19806 2.602287 1.321481 2
687 41081 10.411776 0.664168 3
688 10277 7.083449 0.622589 2
689 7014 2.080068 1.254441 2
690 17275 0.522844 1.622458 2
691 31600 10.362000 1.544827 3
692 59956 3.412967 1.035410 1
693 42181 6.796548 1.112153 3
694 51743 4.092035 0.075804 1
695 5194 2.763811 1.564325 2
696 30832 12.547439 1.402443 3
697 7976 5.708052 1.596152 2
698 14602 4.558025 0.375806 2
699 41571 11.642307 0.438553 3
700 55028 3.222443 0.121399 1
701 5837 4.736156 0.029871 2
702 39808 10.839526 0.836323 3
703 20944 4.194791 0.235483 2
704 22146 14.936259 0.888582 3
705 42169 3.310699 1.521855 1
706 7010 2.971931 0.034321 2
707 3807 9.261667 0.537807 2
708 29241 7.791833 1.111416 3
709 52696 1.480470 1.028750 1
710 42545 3.677287 0.244167 1
711 24437 2.202967 1.370399 1
712 16037 5.796735 0.935893 2
713 8493 3.063333 0.144089 2
714 68080 11.233094 0.492487 1
715 59016 1.965570 0.005697 1
716 11810 8.616719 0.137419 2
717 68630 6.609989 1.083505 1
718 7629 1.712639 1.086297 2
719 71992 10.117445 1.299319 1
720 13398 0.000000 1.104178 2
721 26241 9.824777 1.346821 3
722 11160 1.653089 0.980949 2
723 76701 18.178822 1.473671 1
724 32174 6.781126 0.885340 3
725 45043 8.206750 1.549223 3
726 42173 10.081853 1.376745 3
727 69801 6.288742 0.112799 1
728 41737 3.695937 1.543589 1
729 46979 6.726151 1.069380 3
730 79267 12.969999 1.568223 1
731 4615 2.661390 1.531933 2
732 32907 7.072764 1.117386 3
733 37444 9.123366 1.318988 3
734 569 3.743946 1.039546 2
735 8723 2.341300 0.219361 2
736 6024 0.541913 0.592348 2
737 52252 2.310828 1.436753 1
738 8358 6.226597 1.427316 2
739 26166 7.277876 0.489252 3
740 18471 0.000000 0.389459 2
741 3386 7.218221 1.098828 2
742 41544 8.777129 1.111464 3
743 10480 2.813428 0.819419 2
744 5894 2.268766 1.412130 2
745 7273 6.283627 0.571292 2
746 22272 7.520081 1.626868 3
747 31369 11.739225 0.027138 3
748 10708 3.746883 0.877350 2
749 69364 12.089835 0.521631 1
750 37760 12.310404 0.259339 3
751 13004 0.000000 0.671355 2
752 37885 2.728800 0.331502 1
753 52555 10.814342 0.607652 3
754 38997 12.170268 0.844205 3
755 69698 6.698371 0.240084 1
756 11783 3.632672 1.643479 2
757 47636 10.059991 0.892361 3
758 15744 1.887674 0.756162 2
759 69058 8.229125 0.195886 1
760 33057 7.817082 0.476102 3
761 28681 12.277230 0.076805 3
762 34042 10.055337 1.115778 3
763 29928 3.596002 1.485952 1
764 9734 2.755530 1.420655 2
765 7344 7.780991 0.513048 2
766 7387 0.093705 0.391834 2
767 33957 8.481567 0.520078 3
768 9936 3.865584 0.110062 2
769 36094 9.683709 0.779984 3
770 39835 10.617255 1.359970 3
771 64486 7.203216 1.624762 1
772 0 7.601414 1.215605 2
773 39539 1.386107 1.417070 1
774 66972 9.129253 0.594089 1
775 15029 1.363447 0.620841 2
776 44909 3.181399 0.359329 1
777 38183 13.365414 0.217011 3
778 37372 4.207717 1.289767 1
779 0 4.088395 0.870075 2
780 17786 3.327371 1.142505 2
781 39055 1.303323 1.235650 1
782 37045 7.999279 1.581763 3
783 6435 2.217488 0.864536 2
784 72265 7.751808 0.192451 1
785 28152 14.149305 1.591532 3
786 25931 8.765721 0.152808 3
787 7538 3.408996 0.184896 2
788 1315 1.251021 0.112340 2
789 12292 6.160619 1.537165 2
790 49248 1.034538 1.585162 1
791 9025 0.000000 1.034635 2
792 13438 2.355051 0.542603 2
793 69683 6.614543 0.153771 1
794 25374 10.245062 1.450903 3
795 55264 3.467074 1.231019 1
796 38324 7.487678 1.572293 3
797 69643 4.624115 1.185192 1
798 44058 8.995957 1.436479 3
799 41316 11.564476 0.007195 3
800 29119 3.440948 0.078331 1
801 51656 1.673603 0.732746 1
802 3030 4.719341 0.699755 2
803 35695 10.304798 1.576488 3
804 1537 2.086915 1.199312 2
805 9083 6.338220 1.131305 2
806 47744 8.254926 0.710694 3
807 71372 16.067108 0.974142 1
808 37980 1.723201 0.310488 1
809 42385 3.785045 0.876904 1
810 22687 2.557561 0.123738 1
811 39512 9.852220 1.095171 3
812 11885 3.679147 1.557205 2
813 4944 9.789681 0.852971 2
814 73230 14.958998 0.526707 1
815 17585 11.182148 1.288459 3
816 68737 7.528533 1.657487 1
817 13818 5.253802 1.378603 2
818 31662 13.946752 1.426657 3
819 86686 15.557263 1.430029 1
820 43214 12.483550 0.688513 3
821 24091 2.317302 1.411137 1
822 52544 10.069724 0.766119 3
823 61861 5.792231 1.615483 1
824 47903 4.138435 0.475994 1
825 37190 12.929517 0.304378 3
826 6013 9.378238 0.307392 2
827 27223 8.361362 1.643204 3
828 69027 7.939406 1.325042 1
829 78642 10.735384 0.705788 1
830 30254 11.592723 0.286188 3
831 21704 10.098356 0.704748 3
832 34985 9.299025 0.545337 3
833 31316 11.158297 0.218067 3
834 76368 16.143900 0.558388 1
835 27953 10.971700 1.221787 3
836 152 0.000000 0.681478 2
837 9146 3.178961 1.292692 2
838 75346 17.625350 0.339926 1
839 26376 1.995833 0.267826 1
840 35255 10.640467 0.416181 3
841 19198 9.628339 0.985462 3
842 12518 4.662664 0.495403 2
843 25453 5.754047 1.382742 2
844 12530 0.000000 0.037146 2
845 62230 9.334332 0.198118 1
846 9517 3.846162 0.619968 2
847 71161 10.685084 0.678179 1
848 1593 4.752134 0.359205 2
849 33794 0.697630 0.966786 1
850 39710 10.365836 0.505898 3
851 16941 0.461478 0.352865 2
852 69209 11.339537 1.068740 1
853 4446 5.420280 0.127310 2
854 9347 3.469955 1.619947 2
855 55635 8.517067 0.994858 3
856 65889 8.306512 0.413690 1
857 10753 2.628690 0.444320 2
858 7055 0.000000 0.802985 2
859 7905 0.000000 1.170397 2
860 53447 7.298767 1.582346 3
861 9194 7.331319 1.277988 2
862 61914 9.392269 0.151617 1
863 15630 5.541201 1.180596 2
864 79194 15.149460 0.537540 1
865 12268 5.515189 0.250562 2
866 33682 7.728898 0.920494 3
867 26080 11.318785 1.510979 3
868 19119 3.574709 1.531514 2
869 30902 7.350965 0.026332 3
870 63039 7.122363 1.630177 1
871 51136 1.828412 1.013702 1
872 35262 10.117989 1.156862 3
873 42776 11.309897 0.086291 3
874 64191 8.342034 1.388569 1
875 15436 0.241714 0.715577 2
876 14402 10.482619 1.694972 2
877 6341 9.289510 1.428879 2
878 14113 4.269419 0.134181 2
879 6390 0.000000 0.189456 2
880 8794 0.817119 0.143668 2
881 43432 1.508394 0.652651 1
882 38334 9.359918 0.052262 3
883 34068 10.052333 0.550423 3
884 30819 11.111660 0.989159 3
885 22239 11.265971 0.724054 3
886 28725 10.383830 0.254836 3
887 57071 3.878569 1.377983 1
888 72420 13.679237 0.025346 1
889 28294 10.526846 0.781569 3
890 9896 0.000000 0.924198 2
891 65821 4.106727 1.085669 1
892 7645 8.118856 1.470686 2
893 71289 7.796874 0.052336 1
894 5128 2.789669 1.093070 2
895 13711 6.226962 0.287251 2
896 22240 10.169548 1.660104 3
897 15092 0.000000 1.370549 2
898 5017 7.513353 0.137348 2
899 10141 8.240793 0.099735 2
900 35570 14.612797 1.247390 3
901 46893 3.562976 0.445386 1
902 8178 3.230482 1.331698 2
903 55783 3.612548 1.551911 1
904 1148 0.000000 0.332365 2
905 10062 3.931299 0.487577 2
906 74124 14.752342 1.155160 1
907 66603 10.261887 1.628085 1
908 11893 2.787266 1.570402 2
909 50908 15.112319 1.324132 3
910 39891 5.184553 0.223382 3
911 65915 3.868359 0.128078 1
912 65678 3.507965 0.028904 1
913 62996 11.019254 0.427554 1
914 36851 3.812387 0.655245 1
915 36669 11.056784 0.378725 3
916 38876 8.826880 1.002328 3
917 26878 11.173861 1.478244 3
918 46246 11.506465 0.421993 3
919 12761 7.798138 0.147917 3
920 35282 10.155081 1.370039 3
921 68306 10.645275 0.693453 1
922 31262 9.663200 1.521541 3
923 34754 10.790404 1.312679 3
924 13408 2.810534 0.219962 2
925 30365 9.825999 1.388500 3
926 10709 1.421316 0.677603 2
927 24332 11.123219 0.809107 3
928 45517 13.402206 0.661524 3
929 6178 1.212255 0.836807 2
930 10639 1.568446 1.297469 2
931 29613 3.343473 1.312266 1
932 22392 5.400155 0.193494 1
933 51126 3.818754 0.590905 1
934 53644 7.973845 0.307364 3
935 51417 9.078824 0.734876 3
936 24859 0.153467 0.766619 1
937 61732 8.325167 0.028479 1
938 71128 7.092089 1.216733 1
939 27276 5.192485 1.094409 3
940 30453 10.340791 1.087721 3
941 18670 2.077169 1.019775 2
942 70600 10.151966 0.993105 1
943 12683 0.046826 0.809614 2
944 81597 11.221874 1.395015 1
945 69959 14.497963 1.019254 1
946 8124 3.554508 0.533462 2
947 18867 3.522673 0.086725 2
948 80886 14.531655 0.380172 1
949 55895 3.027528 0.885457 1
950 31587 1.845967 0.488985 1
951 10591 10.226164 0.804403 3
952 70096 10.965926 1.212328 1
953 53151 2.129921 1.477378 1
954 11992 0.000000 1.606849 2
955 33114 9.489005 0.827814 3
956 7413 0.000000 1.020797 2
957 10583 0.000000 1.270167 2
958 58668 6.556676 0.055183 1
959 35018 9.959588 0.060020 3
960 70843 7.436056 1.479856 1
961 14011 0.404888 0.459517 2
962 35015 9.952942 1.650279 3
963 70839 15.600252 0.021935 1
964 3024 2.723846 0.387455 2
965 5526 0.513866 1.323448 2
966 5113 0.000000 0.861859 2
967 20851 7.280602 1.438470 2
968 40999 9.161978 1.110180 3
969 15823 0.991725 0.730979 2
970 35432 7.398380 0.684218 3
971 53711 12.149747 1.389088 3
972 64371 9.149678 0.874905 1
973 9289 9.666576 1.370330 2
974 60613 3.620110 0.287767 1
975 18338 5.238800 1.253646 2
976 22845 14.715782 1.503758 3
977 74676 14.445740 1.211160 1
978 34143 13.609528 0.364240 3
979 14153 3.141585 0.424280 2
980 9327 0.000000 0.120947 2
981 18991 0.454750 1.033280 2
982 9193 0.510310 0.016395 2
983 2285 3.864171 0.616349 2
984 9493 6.724021 0.563044 2
985 2371 4.289375 0.012563 2
986 13963 0.000000 1.437030 2
987 2299 3.733617 0.698269 2
988 5262 2.002589 1.380184 2
989 4659 2.502627 0.184223 2
990 17582 6.382129 0.876581 2
991 27750 8.546741 0.128706 3
992 9868 2.694977 0.432818 2
993 18333 3.951256 0.333300 2
994 3780 9.856183 0.329181 2
995 18190 2.068962 0.429927 2
996 11145 3.410627 0.631838 2
997 68846 9.974715 0.669787 1
998 26575 10.650102 0.866627 3
999 48111 9.134528 0.728045 3
1000 43757 7.882601 1.332446 32.2 KNN算法實現(xiàn)

myKNN.py

1 # -*- coding: utf-8 -*-
2 """
3 Created on Mon Sep 17 15:58:58 2018
4 KNN(K-Nearest Neighbor) K-近鄰算法
5 @author: weixw
6 """
7
8 import numpy as np
9 import operator
10 #輸入:行測試數(shù)據(jù)集,訓(xùn)練數(shù)據(jù)集,標簽數(shù)據(jù)集,用于選擇最近鄰居的數(shù)目
11 #功能:根據(jù)歐氏距離公式,找到與未知類別的測試數(shù)據(jù)距離最小的 k 個點,
12 # 以這 k 個點出現(xiàn)頻率最高的類別座位測試數(shù)據(jù)的預(yù)測分類。
13 # 歐氏距離公式:測試數(shù)據(jù)與訓(xùn)練數(shù)據(jù)對應(yīng)位置作差,平方和,第二開方
14 #輸出:測試數(shù)據(jù)預(yù)測分類結(jié)果
15 def classify(testDataSet, trainingDataSet, labelList, k):
16 #訓(xùn)練數(shù)據(jù)集行數(shù)
17 trainingDataSetSize = trainingDataSet.shape[0]
18 #np.tile(testDataSet, (trainingDataSetSize,1)沿X軸**1倍(相當于沒有**),再沿Y軸**trainingDataSetSize倍,維數(shù):1000*3
19 #歐氏距離公式實現(xiàn)
20 #1 測試數(shù)據(jù) – 訓(xùn)練數(shù)據(jù)
21 diffMat = np.mat(np.tile(testDataSet, (trainingDataSetSize, 1)) – trainingDataSet)
22 #2 差平方(需要將matrix轉(zhuǎn)化為數(shù)組,否則報錯)
23 sqDiffMat = diffMat.A**2
24 #3 按行求和 axis = 0(默認按列) axis = 1(按行)
25 sqDistances = sqDiffMat.sum(axis = 1)
26 #4 開方
27 distances = sqDistances**0.5
28 #agrsort():從小到大排序,返回歐氏距離最小值對應(yīng)的索引列表
29 sortedDistIndicies = distances.argsort()
30 #預(yù)測分類計數(shù)
31 predictClassCount = {}
32 #多數(shù)表決方式,選擇 k 個歐氏距離最小值
33 for i in range(k):
34 #找到索引對應(yīng)的標簽值
35 voteLabel = labelList[sortedDistIndicies[i]]
36 #預(yù)測標簽值字典,存儲索引標簽值預(yù)測次數(shù)
37 predictClassCount[voteLabel] = predictClassCount.get(voteLabel, 0) + 1
38 #對象按值逆向(由大到?。┡判?br /> 39 # sorted(iterable[, cmp[, key[, reverse]]])
40 # itemgetter(1) 取第一項結(jié)果
41 sortedPredictClassCount = sorted(predictClassCount.items(), key = operator.itemgetter(1), reverse = True)
42 return sortedPredictClassCount[0][0]
43
44
45
46 #輸入:數(shù)據(jù)文件
47 #功能:加載文件,文件最后一列是標簽數(shù)據(jù),分離特征數(shù)據(jù)集與標簽數(shù)據(jù)集
48 # 自動檢測多少列特征數(shù)據(jù)并分離
49 #輸出:特征數(shù)據(jù)集矩陣,標簽數(shù)據(jù)集矩陣
50 def loadDataSet(fileName):
51 #特征數(shù)據(jù)列長度
52 numberFeat = len(open(fileName).readline().split('t')) – 1
53 dataSet = []; labelSet = []
54 fr = open(fileName)
55 for line in fr.readlines():
56 lineArr = []
57 #去除收尾空格,第二分割每一列
58 curLine = line.strip().split('t')
59 #保存每一列特征數(shù)據(jù)
60 for i in range(numberFeat):
61 lineArr.append(float(curLine[i]))
62 dataSet.append(lineArr)
63 labelSet.append(float(curLine[-1]))
64 return np.mat(dataSet), labelSet
65
66 #輸入:原始特征數(shù)據(jù)集
67 #功能:數(shù)據(jù)歸一化,使每類數(shù)據(jù)都在同一范圍內(nèi) (0, 1) 變化
68 # 歸一化公式:newValue = (ol**alue – min)/(max – min)
69 #輸出:歸一化后特征數(shù)據(jù)集,范圍數(shù)組大小(分母),列最小值數(shù)組
70 def autoNorm(dataMat):
71 #min(axis) 無參數(shù):所有值中最小值;axis = 0:每列最小值;axis = 1:每行最小值
72 #求出每列最小值
73 minVal**at = dataMat.min(0)
74 #求出每列最大值
75 maxVal**at = dataMat.max(0)
76 #計算差值(對應(yīng)位置相減)
77 range**at = maxVal**at – minVal**at
78 #歸一化特征數(shù)據(jù)集初始化,維數(shù):1000*3
79 normDataMat = np.zeros(np.shape(dataMat))
80 #原始數(shù)據(jù)集行數(shù)目
81 m = dataMat.shape[0]
82 #歸一化公式分子實現(xiàn)
83 #np.tile(minVals, (m,1)沿X軸**1倍(相當于沒有**),再沿Y軸**m倍,維數(shù):1000*3
84 normDataMat = dataMat – np.tile(minVal**at, (m, 1))
85 #歸一化公式實現(xiàn),求得歸一化結(jié)果
86 normDataMat = normDataMat/np.tile(range**at, (m, 1))
87 return normDataMat, range**at, minVal**at
88
89 #輸入:特征數(shù)據(jù)集矩陣,標簽數(shù)據(jù)集列表,測試數(shù)據(jù)與訓(xùn)練數(shù)據(jù)比例,用于選擇最近鄰居的數(shù)目
90 #功能:求出測試特征數(shù)據(jù)集預(yù)測分類結(jié)果
91 # 1.解析文件
92 # 2.通過ratio確定測試數(shù)據(jù)集
93 # 3.歸一化
94 # 4.對每一行測試數(shù)據(jù)運用歐氏距離公式以及多數(shù)表決方式預(yù)測分類結(jié)果
95 # 5.求出整個測試數(shù)據(jù)集的預(yù)測分類結(jié)果
96 #輸出:測試數(shù)據(jù)預(yù)測分類結(jié)果
97 def dataClassify(dataMat, labelList, ratio, k):
98
99 #特征數(shù)據(jù)集歸一化
100 normDataMat, range**at, minVal**at = autoNorm(dataMat)
101 #歸一化特征數(shù)據(jù)集行數(shù)目
102 m = normDataMat.shape[0]
103 #測試數(shù)據(jù)集行數(shù)目(也就知道訓(xùn)練數(shù)據(jù)集行數(shù))
104 testDataNum = int(m*ratio)
105 #預(yù)測分類錯誤計數(shù)
106 errorCount = 0.0
107 for i in range(testDataNum):
108 #求出測試數(shù)據(jù)集每行預(yù)測分類
109 classifierResult = classify(normDataMat[i, :], normDataMat[testDataNum:m, :], labelList[testDataNum:m], k)
110 print ("the classifier result is: %d, the real answer is: %d"% (classifierResult, labelList[i]))
111 #統(tǒng)計錯誤預(yù)測分類
112 if(classifierResult != labelList[i]):
113 errorCount += 1.0
114 print ("the total error count is %d"% errorCount)
115 print ("the total error rate is: %f"%(errorCount/float(testDataNum)))
116
117
118 #繪制散點圖
119 def drawScatter(filename):
120 import matplotlib.pyplot as plt
121 #加載文件,分離特征數(shù)據(jù)集和標簽數(shù)據(jù)集
122 dataMat, labelList = loadDataSet(filename)
123 #矩陣轉(zhuǎn)化為數(shù)組
124 dataArr = dataMat.A
125 #創(chuàng)建一副圖畫
126 plt.figure()
127 #保存標簽類型相同的索引值(觀察標簽數(shù)據(jù)集,有3種不同類型)
128 label_idx1 = []; label_idx2 = []; label_idx3 = []
129 #遍歷標簽數(shù)組,索引,值
130 for index, value in enumerate(labelList):
131 if(value == 1):
132 label_idx1.append(index)
133 elif(value == 2):
134 label_idx2.append(index)
135 else:
136 label_idx3.append(index)
137 #scatter(x,y,s,maker,color,label)
138 #x,y必須是數(shù)組類型,s表示形狀大小,maker:形狀
139 plt.scatter(dataArr[label_idx1, 1], dataArr[label_idx1, 2], marker = 'x', color = 'm', label = 'no like', s = 30)
140 plt.scatter(dataArr[label_idx2, 1], dataArr[label_idx2, 2], marker = '+', color = 'c', label = 'like', s = 50)
141 plt.scatter(dataArr[label_idx3, 1], dataArr[label_idx3, 2], marker = 'o', color = 'r', label = 'very like', s = 15)
142 plt.legend(loc = 'upper right')
143
144 2.3 測試代碼 1 # -*- coding: utf-8 -*-
2 """
3 Created on Tue Sep 18 14:07:14 2018
4 測試KNN算法
5 @author: weixw
6 """
7 import myKNN as mk
8 #前50%是測試數(shù)據(jù),后50%作為訓(xùn)練數(shù)據(jù)
9 ratio = 0.5
10 #選擇鄰居數(shù)目
11 #errCount:31 errRate:6.2%
12 k = 4
13 #errCount:30 errRate:6.0%
14 #k = 8
15 #errCount:30 errRate:6.0%
16 #k = 12
17 #errCount:33 errRate:6.6%
18 #k = 16
19 #errCount:32 errRate:6.4%
20 #k = 20
21
22
23
24 fileName = 'datingTestSet2.txt'
25 #繪制數(shù)據(jù)散點圖
26 mk.drawScatter(fileName)
27 #加載文件,分離特征數(shù)據(jù)集和標簽數(shù)據(jù)集
28 dataMat, labelList = mk.loadDataSet(fileName)
29 #預(yù)測測試數(shù)據(jù)結(jié)果
30 mk.dataClassify(dataMat, labelList, ratio, k)2.4 運行結(jié)果

輸入數(shù)據(jù)的散點圖:

kb3194798

k = 4 ,ratio = 0.5(一半測試數(shù)據(jù),一半訓(xùn)練數(shù)據(jù))時分類結(jié)果:

kb3194798

在 k為不同值時運行結(jié)果:

kb3194798

可以看出,并不是 k越大,正確率越高,會產(chǎn)生過擬合。

3. 優(yōu)缺點優(yōu)點:

1. 簡單,易于理解,易于實現(xiàn),無需訓(xùn)練;

2. 精度高,對異常值不敏感;

缺點:

計算復(fù)雜度高,空間復(fù)雜度高。

拓展知識:

原創(chuàng)文章,作者:九賢生活小編,如若轉(zhuǎn)載,請注明出處:http:///45349.html